Search results

1 – 9 of 9
Article
Publication date: 1 October 1999

G. Subramanian, S. Palraj and T.M. Balasubramanian

The galvanic corrosion interactions of zinc and SS.304 have been studied in a tropical marine environment over a period of 427 days, under different area ratios. The galvanic…

Abstract

The galvanic corrosion interactions of zinc and SS.304 have been studied in a tropical marine environment over a period of 427 days, under different area ratios. The galvanic interaction of zinc and SS.304 are highlighted in terms of the corrosion rate of zinc or SS.304 resulting from galvanic coupling, and the susceptibility of zinc to pitting due to galvanic corrosion. The galvanic potential and galvanic current of the system are monitored. The corrosion products at the interface of the bimetallic contacts are analysed with XRD technique and the pitting/grooving on zinc resulting from galvanic corrosion is measured using a high resolution microscope. The weathering parameters and environmental pollutants are monitored to give an insight into the possible means of favouring the galvanic interactions. The results of the study are discussed in the light of the above factors towards predicting a mechanism for the galvanic interactions of zinc and SS.304.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2002

S. Palraj, G. Venkatachari and G. Subramanian

The bio‐fouling and corrosion characteristics of 60/40 brass were investigated in the Palk Bay waters of the Mandapam Coast, India, over a period of a year. The experimental…

Abstract

The bio‐fouling and corrosion characteristics of 60/40 brass were investigated in the Palk Bay waters of the Mandapam Coast, India, over a period of a year. The experimental methods included corrosion rate by weight loss measurement and analysis of the corrosion product by X‐ray diffraction. The bio‐fouling characteristics of 60/40 brass were studied in terms of seasonality of recruitment of organisms and quantification of the fouling community development pattern. The XRD analysis of the products on brass threw more light on the protective nature of the compounds formed and their impact on the overall corrosion rate of the material. The organisms found in fouling deposits on brass included algae, bryozoans and hydroids. The results of the study are discussed in the light of the sea‐water characteristics and monsoonal effects.

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 October 1999

363

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 5
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 28 October 2014

Luciana V.R. de Messano, Leila Y. Reznik, Lucio Sathler and Ricardo Coutinho

The purpose of this paper was to use the barnacle Amphibalanus amphitrite reared in the laboratory to investigate the effects of juveniles on corrosion behaviour of three…

Abstract

Purpose

The purpose of this paper was to use the barnacle Amphibalanus amphitrite reared in the laboratory to investigate the effects of juveniles on corrosion behaviour of three stainless steels (SS): UNS S31600, N08904 and UNS S32760.

Design/methodology/approach

Barnacle larvae were maintained in a laboratory until they reached the cypris larval stage. A total of 100 cyprids were added to four individual containers; each SS coupon (70 × 50 × 2 mm3) was immersed into the containers. After the cyprids attached to the coupons, juveniles were reared for 21 days with the microalgae Skeletonema costatum (Greville) Cleve. Values of open circuit potential (OCP), breakdown potential (Eb) and polarisation resistance (Rp) were evaluated, along with surface examinations.

Findings

OCP differences between barnacles and control coupons were not apparent. However, the lowest values of Eb and Rp were observed in the presence of juvenile barnacles, demonstrating the SS corrosion caused by these organisms. Crevice corrosion around the base of the barnacles was detected during visual inspections, despite the small size of the barnacles and the short duration of the experiments.

Originality/value

The A. amphitrite assays were useful as a tool for testing corrosion behaviour of the SS under laboratory conditions. This was the first study to test the use of this common protocol in anti-fouling research as a method to study marine biocorrosion.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2015

Diego Hernández-Martínez, Ulises León-Silva and Maria Elena Nicho

The purpose of this paper is to study the effect of thermal treatment on the corrosion protection of steel by using poly(3-hexylthiophene) (P3HT) and P3HT/PS(polystyrene) or…

Abstract

Purpose

The purpose of this paper is to study the effect of thermal treatment on the corrosion protection of steel by using poly(3-hexylthiophene) (P3HT) and P3HT/PS(polystyrene) or P3HT/PMMA(polymethyl methacrylate) blends coatings in sulfuric acid solution.

Design/methodology/approach

The polymer coatings were thermally treated at two different temperatures (100 and 200°C, respectively) and were compared with the polymer coatings dried at room temperature in their application as protective coatings against corrosion of A36 steel. The corrosion resistance of polymer coatings-covered steel substrates was evaluated by using potentiodynamic polarization curves and linear polarization resistance.

Findings

At 25 and 100°C, polymer coatings showed a better protection of the A36 steel, and the corrosion rate diminished in three orders of magnitude with regard to the bare steel. Morphological study showed that the increased temperature benefited the integration of the two polymeric phases; however; the temperature of 200°C affected the film quality, generated cracks and holes, which affected the barrier properties of the coatings.

Research limitations/implications

The research involved the synthesis and physicochemical characterization of the polymeric coatings (P3HT, PS/P3HT y PMMA/P3HT), as well as their application as coatings in the steel to prevent corrosion. The effect of thermal treatment of the protective coatings on steel corrosion was studied.

Practical implications

This paper aims to contribute to reducing the problem of metal corrosion through the use of polymer coatings.

Social implications

Today, majority of metal surfaces are subject under the protection to prevent a very common phenomenon, that is corrosion. Corrosion is the result of chemical reactions that occur between a metal or a metal alloy and its environment. Corrosion creates a degradation of the material that has an impact on some economic, environmental and even social aspects, here the great importance of its protection.

Originality/value

It is shown in this study that the P3HT coating provides better corrosion protection of the A36 steel than the PS and PMMA coatings. However, mixtures of P3HT with PMMA and PS protected the steel from corrosion by two and three orders of magnitude similar to the simple P3HT coating. Polymer blends improved adhesion to the substrate and mechanical property of the coating, and in addition, the polymer blends made cheaper coating.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2011

A. Akinci and F. Yilmaz

The purpose of this paper is to report salt spray testing of epoxy‐polyester top‐coating applied on Zn‐sprayed, Al‐sprayed and 85Zn‐15Al‐sprayed steel samples.

Abstract

Purpose

The purpose of this paper is to report salt spray testing of epoxy‐polyester top‐coating applied on Zn‐sprayed, Al‐sprayed and 85Zn‐15Al‐sprayed steel samples.

Design/methodology/approach

In these tests, steel substrates sprayed with Zn, Al and 85Zn‐15Al coatings of different average thicknesses ranging from 120 to 210 μm were top‐coated with an epoxy‐polyester sealing layer. The corrosion test was performed with salt solution for over 2,000‐h. The degree of damage to the samples was evaluated quantitatively in terms of ratio of scribed to unscribed area of coating.

Findings

It was evident that the corrosion resistance of Al‐sprayed top‐coated surfaces was better than coated Zn‐spray or coated 85Zn‐15Al‐spray systems. As a result, when Al‐coated surfaces were top‐coated with polymeric layer, it was found that their surfaces were remarkably unaffected by the salt spray environment.

Originality/value

The salt spray measurements indicated that the Al‐spray epoxy‐polyester polymer double system was more durable than the other two systems (polymeric top‐coated Zn‐spay, and polymeric top‐coated 85Zn‐15Al‐spray), so far as protection from the chloride salt spray environment was concerned.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 June 2017

Aboozar Golgoon, Mahmood Aliofkhazraei, Mansoor Toorani, Mohammad Hossein Moradi, Alireza Sabour Rouhaghdam and Masoud Asgari

The low resistance against penetration of water, oxygen and the other corrosive ions through the paths of coating is one the most important problems. So, protective properties of…

Abstract

Purpose

The low resistance against penetration of water, oxygen and the other corrosive ions through the paths of coating is one the most important problems. So, protective properties of coating such as polyester must be promoted. Recently, the use of nanoparticles in the matrix of polymer coating to increase their protection and mechanical properties has been prospering greatly. The purpose of this study is to improve the corrosion resistance of the polyester powder coating with ZnO nanoparticles. The ZnO nanoparticles have been synthesized by hydrothermal method in a microwave. Using polyester – ZnO nanocomposite coating as powder – combining them by ball milling process and coating them by electrostatic process are innovative ideas and have not been used before it.

Design/methodology/approach

Polyester powder as the matrix and ZnO nanoparticles as reinforcing were combined in three different weight percentage (0.5, 1, 2 Wt.%), and they formed polymer nanocomposite by ball milling process. Then, the fabricated nanocomposite powder was applied to the surface of carbon steel using an electrostatic device, and then the coatings were cured in the furnace. The morphology of synthesized zinc oxide nanoparticles was investigated by transmission electron microscope. Also, the morphology of polyester powder and fabricated coatings was studied by scanning electron microscope. The effects of zinc oxide nanoparticles on the corrosion resistance of coated samples were studied by electrochemical impedance spectroscopy (EIS) test at various times (1-90 days) of immersion in 3.5 per cent NaCl electrolyte.

Findings

Scanning electron microscopy (SEM) results reveal that there are no obvious crack and defects in the nanocomposite coatings. In contrast, the pure polyester coatings having many cracks and pores in their structure. According to the EIS results, the corrosion resistance of nanocomposite coating compared to pure coating is higher. The value obtained from EIS test show that corrosion resistance for coating that contains 1 Wt.% nanoparticle was 32,150,000 (Ωcm2), which was six times bigger than that of pure coating. In addition to providing a barrier against diffusion of electrolyte, ZnO nanoparticles act as a corrosion inhibitor and, thus, increases the corrosion resistance. The corrosion resistance of coating containing 0.5 Wt.% nanoparticles was lower as compared to that of 1 Wt.% nanoparticles. The low content of nanoparticles caused partial covering of the porosity of coating which in turn leads to provide weaker barrier properties. The increase in quantity of nanoparticles from 1 to 2 Wt.% also caused a decrease in corrosion resistance which is attributed to the agglomeration of nanoparticles.

Originality/value

The results of this study indicated the significant effect of ZnO nanoparticles on the protective performance and corrosion resistance of the polyester powder coating. Evaluation of coating surface and interface with SEM technique revealed that nanocomposite coating compared with pure polyester coating provided a coating with lower number of pores and with higher quality. The EIS measurements represented that polymeric coating that contains nanoparticles compared to pure coating provides a better corrosion resistance. In addition to providing a barrier against diffusion of electrolyte, ZnO nanoparticles act as a corrosion inhibitor and thus increase the corrosion resistance. The corrosion resistance of coating containing 0.5 Wt.% nanoparticles was lower as compared to that containing 1Wt.% nanoparticles. The low content of nanoparticles caused partial covering of the porosity of coating which in turn leads to provide weaker barrier properties. The increase in quantity of nanoparticles from 1 to 2 Wt.% also caused a decrease in corrosion resistance which is attributed to the agglomeration of nanoparticles.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 March 2020

Akhtar Khan and Kalipada Maity

To explore a hybrid approach in order to attain optimal cutting conditions proficient of generating adequate dimensional accuracy in combination with virtuous surface finish…

Abstract

Purpose

To explore a hybrid approach in order to attain optimal cutting conditions proficient of generating adequate dimensional accuracy in combination with virtuous surface finish during turning of commercially pure titanium (CP-Ti) grade 2.

Design/methodology/approach

In the present paper, an application of the hybrid fuzzy–VIKOR method has been proposed to estimate an optimal combination of process variables during turning of commercially pure titanium (CP-Ti) grade 2. Three distinct input factors, namely, cutting speed, feed rate and depth of cut, were selected, each varied at three levels. Thus, a series of experiments were performed based on Taguchi's 3-factor-3-level (L27) orthogonal array. The major attention was given to acquire minimum cutting force and flank wear along with good surface finish. The adequacy of the proposed methodology was verified with the help of ANOVA test.

Findings

The results of the investigation revealed that the suggested hybrid technique is quite effective, easily understandable and time-saving approach, which can be successfully implemented to solve various problems either of similar or of different kinds.

Originality/value

Increasing demand of qualitative as well as low cost products is identified as the main challenging task in the current competitive market. Therefore, estimation and selection of the most suitable machining environment are of paramount importance in a real-time manufacturing system. Machining process involves both qualitative and quantitative factors, may be conflicting in nature, all to be considered together. Consequently, an appropriate combination of the machining variables is evidently desirable to meet the aforesaid challenges effectively.

Details

Grey Systems: Theory and Application, vol. 10 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 4 November 2013

Morteza Enhessari

Inorganic pigments have been widely investigated due to their chemical stability such as resistance to chemical attacks by acids and alkalis, excellent hardness and high…

Abstract

Purpose

Inorganic pigments have been widely investigated due to their chemical stability such as resistance to chemical attacks by acids and alkalis, excellent hardness and high temperature stability. Cr1.3Fe0.7O3 which is considered as a ceramic nanopigment also seems to be a highly efficient photovoltaic material. The paper aims to discuss these issues.

Design/methodology/approach

In this work, the paper reports the synthesis of a novel and high purity Cr1.3Fe0.7O3 nanopigment via sol-gel process using stearic acid as complexing agent. The method includes formation of an organic precursor with metallic cations homogeneously distributed all over the matrix. Sample characterisations were performed by X-ray diffraction, electron microscopy, UV-vis diffused reflectance spectra and photoluminescence. The transport properties and colour characteristics were also investigated by spectroscopic and technological characterisation of the synthesised nanoparticles.

Findings

The prepared nanopigments were uniform in distribution and a spherical morphology with an average size of about 200 nm was observed. Cr1.3Fe0.7O3 nanoparticles showed a direct band gap value of 2.85 eV and the colour efficiency of the nanopigments evaluated by colourimetric analysis resulted characteristic values of L*=39.96, a*=3.67 and b*=3.12.

Originality/value

This method for synthesis of nanopigments is novel and could be employed for various applications in synthesis of wide variety of nanoceramics.

Details

Pigment & Resin Technology, vol. 42 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 9 of 9